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1. Detailed mesoscopic model of
thalamocortical interactions

- A detailed model of a single cortical column was developed
[R. Traub et al, J. Neurophysiol, 2005]. The model has been

successful in explaining and predicting cortical dynamics such as

oscillations and seizures .

- Realistic multi-column model is being developed.

- Data needed: Recording in multiple cortical regions is highly
desirable. Connectomics data, especially those related to
connected brain regions can be used to constrain the models.

Single-column model can predict seizure activity in rat brain slices

Model Experiment

(rat, cortical
slice in vitro)
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Another example of a behaviorally relevant cortical oscillation
mechanisms elucidated in vitro & model

(single column, in this case)
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Realistic multiple column model being developed
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Cortical Networks Research at IBM

2. Neural network models linking neural activity
and behavior

- We developed a neural network models that extract the hidden
context variables and allow for adaptive behavior in uncertain
environments [M. Rigotti et al, Neurolmage, 2010].

- We are studying the neural basis for context-dependent data
representation and decision making, and how these ideas may be
used in ML.

- Data needed: simultaneous measuring context-dependent behavior
performance and neural activity in higher animals. Connectomics can
be used to constrain the models.

Feature extraction for context-dependent recognition and
Reinforcement Learning in partially observable environments

* Behavior of macaque monkeys trained on a context- Visual cue

dependent discrimination of visual cues displays rapid 1
adaptation to changing context o 08
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1) The primate brains extracts and encodes hidden 0 o6
contextual variables of the environment, besides visible 0.4 !
ones ' '
2) Information is distributed across area: cortex (OFC) OFC Amy.

and subcortical regions (Amygdala)

3) This information is crucial to perform rapid adjustment  [joint work with C.D.
to changing context: when context encoding is weak, Salzman at Columbia
behavior is impaired (not shown) University]

Unsupervised feature extraction for context-dependent
Reinforcement Learning (RL)
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variables through unsupervised
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1) Computational neuroscience models -
can be used to bridge neural activity ) , | ,
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and behavior time

2) They also p_rowd_e constraint for Neural network observes sequences of
detailed cortical circuit models and cues and creates attractor states that

3) Reveal computational principles to encode hidden context variables
exploit in new ML algorithms [Rigotti et al. Neurolmage, 2010]

Neural modeling: capabilities and desired data

3. Modeling of global architecture for
behaviorally-driven perception

- Perceptual learning is achieved through action-perception loops.

- Cortical architectures are intimately embedded in anatomical
reentrant patterns dominated by behavioral functionality, i.e.
cortico-thalamic-basal loops.

- We have implemented linear and non-linear predictive models of
large-scale imaging data including fMRI and calcium imaging
(Neuroimage 2011, IEEE 2011, JMLR 2013) in HPC (Blue Gene)

- We are studying how the predictive dynamical components can
be interpreted in a machine learning framework.

- Data needed: Functional: large-scale functional data: calcium
Imaging, high-resolution fMRI, multi-area electrode array
recordings.

Anatomical: DTI, axonal tracing and EM reconstructions that can
explicitly identify inter- and intra-area connectivity.
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Data-driven dimensionality reduction

Validation of machine learning
model (.8, Doya, 1999)

Reduced non-linear dvnamics

Predictive model of network of low-
dimensional dvnamical units
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Model calcium dynamics
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#(t) = ara(t)(1 — 2*(t)) + y(az + 1(t))

y(t) = —azz(t) — as(y(t) — as)

excitability
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Machine Learning

IBM Research Expertise in Machine Learning: Neuroscience-
related Algorithmic Innovations and Applications

Infomax (Ralph Linsker): self-organizing principle for cortical learning

Reinforcement Learning (RL)
« Gerald Tesauro: developed TD-Gammon (self-teaching backgammon program)

— first significant application of RL
« Additional applications in e-commerce agents, self-managing computing systems, and
Watson's Jeopardy! game-playing strategy

« Naoki Abe et al.: successful deployed applications of RL for sequential targeted
marketing; optimizing debt collections

ML for Neuroimaging data (Guillermo Cecchi & Irina Rish): fMRI
Analysis; Schizophrenia Classification

Deep Neural Network Learning: Large-scale applications in Speech
Recognition (Brian Kingsbury, Bhuvana Ramabhadran et al.) and in
Image / Video classification (Liang-liang Cao)

Other IBM Research Expertise in Machine Learning

* Active Learning
* Graphical Models | Bayes Nets
* Manifold Learning

* Collaborative

Filtering

» Sparsity Constraints

 Latent Topic Modelling

* Relational Learning
Spatio-Temporal Predictive Models

* NIMBLE Platform: enables rapid parallel implementation
of ML algorithms using MapReduce/Hadoop

Large scale circuit models

Ultrascalable solution to cortical Microcircuit
and connectomic-based simulation

TISSUE BOUNDARY

MODELING APPROACH:

Develop tissue meshes
based on histology, MR

Growth algorithm inserts
neurons within mesh

Constrain neuronal fiber

growth using mesh repulsion

representing boundaries

Model tract waypoints using

DTI, transformations into

Poisson problems of charge,

conductivity, gradients.

Constrain axonal growth

Simulation size:
~10,000 Synapses/Neuron

CONSTRAINTS-BASED STRUCTURAL MODEL
Neocortical structural model

Simulation

Processor

Element Number Balance
Neurons 1,024,000, NA
Branches 344,474,059 84,100 * 7,406
Junctions 208,947,659 51,012 + 4,026
Compartments 1,083,289,600 264,475 * 7,582
Na Channels 330,613,914 80,716 * 7,440
KDR Channels 330,613,914 80,716 = 7,440
Synoposs ateeo72360 | LTI
Sympess | 2255068048 o008
7,626,124 1,861 £

Tissue
1,024,000 Neurons

Excellent weak scaling decomposition

demonstrated on BlueGene/P
up to 5000 nodes:
~250 Neurons/Processor




